Installation:
(1) Download AmberTools16.tar.bz2 from http://ambermd.org/AmberTools16-get.html
(2) bunzip2 AmberTools16.tar.bz2
(3) tar xvf AmberTools16.tar
(4) cd amber16
(5) export AMBERHOME=/home/myname/amber16 # (for bash, zsh, ksh, etc.)
setenv AMBERHOME /home/myname/amber16 # (for csh, tcsh)
(if needed, you may need to install csh: sudo apt-get install csh)
(6) You may need to install flex, bison and some compilers and other libraries
(use synaptic package manager or apt-get)
(7) ./configure gnu (if needed, switch over to csh)
(8) source /home/myname/amber16/amber.sh # for bash, zsh, ksh, etc.
source /home/myname/amber16/amber.csh # for csh, tcsh
(9) make install
(10) make test
Useful tips:
(1) pdb4amber -i input.pdb -o output.pdb [options]
(2) $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.DNA.bsc1 -f $AMBERHOME/dat/leap/cmd/leaprc.water.tip3p
(3) In xleap window:
(a) to load a pdb file
bdi=loadpdb "output.pdb"
(b) to see and edit the structure
edit bdi
(c) to see the list of structures loaded
list
(e) to save prmtop and inpcrd:
saveamberparm bdi bdi.prmtop bdi.inpcrd
Tutorial:
(http://ambermd.org/tutorials/advanced/tutorial2/section1.htm)
system: N-methylacetamide (NMA) in a periodic box of TIP3P water
input PDB: NMA_skeleton.pdb
content of NMA_skeleton.pdb is as follows (missing atoms will be guessed):
step1: $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB
(1) Download AmberTools16.tar.bz2 from http://ambermd.org/AmberTools16-get.html
(2) bunzip2 AmberTools16.tar.bz2
(3) tar xvf AmberTools16.tar
(4) cd amber16
(5) export AMBERHOME=/home/myname/amber16 # (for bash, zsh, ksh, etc.)
setenv AMBERHOME /home/myname/amber16 # (for csh, tcsh)
(if needed, you may need to install csh: sudo apt-get install csh)
(6) You may need to install flex, bison and some compilers and other libraries
(use synaptic package manager or apt-get)
(7) ./configure gnu (if needed, switch over to csh)
(8) source /home/myname/amber16/amber.sh # for bash, zsh, ksh, etc.
source /home/myname/amber16/amber.csh # for csh, tcsh
(9) make install
(10) make test
Useful tips:
(1) pdb4amber -i input.pdb -o output.pdb [options]
(2) $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.DNA.bsc1 -f $AMBERHOME/dat/leap/cmd/leaprc.water.tip3p
(3) In xleap window:
(a) to load a pdb file
bdi=loadpdb "output.pdb"
(b) to see and edit the structure
edit bdi
(c) to see the list of structures loaded
list
(e) to save prmtop and inpcrd:
saveamberparm bdi bdi.prmtop bdi.inpcrd
Tutorial:
(http://ambermd.org/tutorials/advanced/tutorial2/section1.htm)
system: N-methylacetamide (NMA) in a periodic box of TIP3P water
input PDB: NMA_skeleton.pdb
content of NMA_skeleton.pdb is as follows (missing atoms will be guessed):
ATOM 1 C ACE 1 0.000 0.000 0.000 ATOM 2 N NME 2 3.000 1.000 -1.000 TER
step1: $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB
step2: nma=loadpdb "NMA_skeleton.pdb"
step3: edit nma (to energy minimize)
step4: Edit->Relax
step 5: Unit->Close
step6: source leaprc.water.tip3 (load solvent parameters)
step7: to add water box:
solvatebox nma TIP3PBOX 15 (here, buffer=15 A, which means that the distance between any atom of NMA and the edge of the box is at least 15 A)
step8:
saveamberparm nma nma.prmtop nma.inpcrd
Our B-DNA model:
step1: remove hydrogens from DNA
step2: add 'TER' after DNAA and DNAB
step3: change residue name of water from TIP3 to TP3
step4: change OH2 of water to O
step5:$AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB -f $AMBERHOME/dat/leap/cmd/leaprc.DNA.bsc1
step6: In xleap window: source leaprc.water.tip3p
step7: bdna=loadpdb "l_noh.pdb"
step8: saveamberparm bdna bdna.prmtop bdna.inpcrd
step9: savepdb bdna bdna_amber.pdb
For parmbsc1:
refer: http://mmb.irbbarcelona.org/ParmBSC1/help.php?id=download#instructions
To visualize AMBER trajectory using VMD:
----------------------------------------
step1: File -> New Molecule -> select file.prmtop (if required, specify the file type as "AMBER7 Parm")
step2: select "Load Data Into Molecule" and load the trajectory file (file.dcd). Here, you need to specify the input dcd file type as "CHARMM,NAMD,XPLOR DCD Trajectory".
To set the topology and parameters for a new residue/fragment:
--------------------------------------------------------------
read: http://ambermd.org/tutorials/advanced/tutorial1/section3.htm
To model proteins:
------------------
Note1: There are three types of histidine (HIS in normal pdb files) residues in AMBER:
HID: Histidine with hydrogen on the delta nitrogen (HSD in CHARMM)
HIE: Histidine with hydrogen on the epsilon nitrogen (HSE in CHARMM)
HIP: Histidine with hydrogens on both nitrogens; this is positively charged.
It is up to the user to inspect the environment of each histidine and identify the type that is appropriate.
Note2: Change ILE CD to CD1
Note3: Change CGLY OT1 to O;
Change CGLY OT2 to OXT
Note4: Remove all hydrogens of the protein from the pdb file
STEP1: $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB
STEP2: In xleap window: loadamberparams frcmod.ff99SBnmr (You may need to download frcmod.ff99SBnmr from Bruschweiler's website and copy it to $AMBERHOME/dat/leap/parm folder).
STEP3: source leaprc.water.tip3p
STEP4: ubq=loadpdb "ionized_nohyd.pdb"
STEP5: saveamberparm ubq ubq.prmtop ubq.inpcrd
STEP6: savepdb ubq ubq_amber.pdb
AMBER parameters for simple molecules and cofactors:
------------------------------------------------------------------------------------------
http://research.bmh.manchester.ac.uk/bryce/amber
http://upjv.q4md-forcefieldtools.org/REDDB/projects/F-90/
How to cite Ambertools16:
D.A. Case, R.M. Betz, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W.M. Botello-Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. Xiao and P.A. Kollman (2016), AMBER 2016, University of California, San Francisco.
solvatebox nma TIP3PBOX 15 (here, buffer=15 A, which means that the distance between any atom of NMA and the edge of the box is at least 15 A)
step8:
saveamberparm nma nma.prmtop nma.inpcrd
Our B-DNA model:
step1: remove hydrogens from DNA
step2: add 'TER' after DNAA and DNAB
step3: change residue name of water from TIP3 to TP3
step4: change OH2 of water to O
step5:$AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB -f $AMBERHOME/dat/leap/cmd/leaprc.DNA.bsc1
step6: In xleap window: source leaprc.water.tip3p
step7: bdna=loadpdb "l_noh.pdb"
step8: saveamberparm bdna bdna.prmtop bdna.inpcrd
step9: savepdb bdna bdna_amber.pdb
For parmbsc1:
refer: http://mmb.irbbarcelona.org/ParmBSC1/help.php?id=download#instructions
source $AMBERHOME/dat/leap/cmd/leaprc.ff14SB
loadoff parmBSC1.lib loadamberparams parmBSC1.frcmod
To visualize AMBER trajectory using VMD:
----------------------------------------
step1: File -> New Molecule -> select file.prmtop (if required, specify the file type as "AMBER7 Parm")
step2: select "Load Data Into Molecule" and load the trajectory file (file.dcd). Here, you need to specify the input dcd file type as "CHARMM,NAMD,XPLOR DCD Trajectory".
To set the topology and parameters for a new residue/fragment:
--------------------------------------------------------------
read: http://ambermd.org/tutorials/advanced/tutorial1/section3.htm
To model proteins:
------------------
Note1: There are three types of histidine (HIS in normal pdb files) residues in AMBER:
HID: Histidine with hydrogen on the delta nitrogen (HSD in CHARMM)
HIE: Histidine with hydrogen on the epsilon nitrogen (HSE in CHARMM)
HIP: Histidine with hydrogens on both nitrogens; this is positively charged.
It is up to the user to inspect the environment of each histidine and identify the type that is appropriate.
Note2: Change ILE CD to CD1
Note3: Change CGLY OT1 to O;
Change CGLY OT2 to OXT
Note4: Remove all hydrogens of the protein from the pdb file
STEP1: $AMBERHOME/bin/xleap -s -f $AMBERHOME/dat/leap/cmd/leaprc.protein.ff14SB
STEP2: In xleap window: loadamberparams frcmod.ff99SBnmr (You may need to download frcmod.ff99SBnmr from Bruschweiler's website and copy it to $AMBERHOME/dat/leap/parm folder).
STEP3: source leaprc.water.tip3p
STEP4: ubq=loadpdb "ionized_nohyd.pdb"
STEP5: saveamberparm ubq ubq.prmtop ubq.inpcrd
STEP6: savepdb ubq ubq_amber.pdb
AMBER parameters for simple molecules and cofactors:
------------------------------------------------------------------------------------------
http://research.bmh.manchester.ac.uk/bryce/amber
http://upjv.q4md-forcefieldtools.org/REDDB/projects/F-90/
How to cite Ambertools16:
D.A. Case, R.M. Betz, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W.M. Botello-Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. Xiao and P.A. Kollman (2016), AMBER 2016, University of California, San Francisco.